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Abstract

By constructing a Gray map @, (1 + uz)-cyclic and cyclic codes over the ring

R = Fy + ulFy + uze are studied. We prove that C is a (1 + u? )- cyclic code of
length n over R, if and only if ®(C) is a quasi-cyclic code over Fy of index 2 and of

length 4n. We also prove that, if n is odd, then every binary code which is the
Gray image of a linear cyclic code of length n over R is equivalent to a linear

quasi-cyclic code over Fy of index 2 and length 4,,.
1. Introduction

There has been tremendous interest and research in codes over finite

rings, especially the ring Z,, in recent years. Codes over Z, are linked
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to binary code via the Gray map. In [7], Wolfmann showed that the Gray
image of a linear negacyclic code over Z, of length n is a distance-

invariant (not necessary linear) cyclic code. He also showed that, for odd

n, the Gray image of a linear cyclic code over Z, of length n is equivalent
to a binary cyclic code. Codes over Fy + ulfy also have been discussed by a

number of authors. In [3], Bonnecaze and Udaya studied cyclic codes and

self-dual codes over Fy + ulFy. Qian and et al. [5] have studied cyclic code
of odd length over Fy + ulF5. Recently, Abualrub and Siap [1] studied

(1 + u)- cyclic code of arbitrary length over Fy + uFs.

In this paper, by constructing a Gray map @, we prove that, if n is
odd, the Gray image of a linear cyclic code of length n over

Fy + uly + u2F2 is equivalent to a cyclic code of length 4n over Fsy.
2. Preliminaries

Let R be the commutative ring Fy + ulFy + uFy : = Fylu]/ (u?),

where ©® = 0. The binary field Fy is a subring of R. The element of R

2 2

may be written as 0, 1, u, 1 + u, u2,1+u ,u+u2, and 1+ u + u”.

We emphasize that, throughout this paper, R denotes the
commutative ring Fy + ulfy + u2[F2.
Definition 2.1. For any A € R\ {0}, let v, be the map from R" to
R™, given by
Vk(r07 n, -, rn—l) = (}“rn—b o, 15 > rn—Z)'

Definition 2.2. Let R be a commutative ring, and m be a positive

integer. Then the shift ¢ of R™ is the permutation defined by
G(qo’ q1, s Qm-1 ) = (Qm—ly q0, 915y Am-2 ),
and for any positive integer s, let

G®S - RMS Rms,
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(aW]a?|--1a®)) > (o(aV)o(a®)|-{o(a))),

where a(l), a(2), - a® e R™ In particular, ¢®! = o.

A linear code of length n over R is a R-submodule of R". A cyclic code
of length n over R is a subset C of R" such that o(C) = C. A code C over

R satisfying v; (C) = C is called a constacyclic code, or a A -cyclic code,

while a code C' over R satisfying ¢®5(C') = C' is called a quasi-cyclic

code of index s and of length ms . A 1-cyclic code is a cyclic code. A quasi-

cyclic code of index 1 is a cyclic code.

In this paper, a cyclic, constacyclic, quasi-cyclic code need not be

linear.

Let C be a code of length n over R, and P(C) be its polynomial

representation, i.e.,
n-1 )
P(C) = {Zrixﬂ(ro, Py s Tyo1) € C}
1=0
It is easy to prove that:
Proposition 2.3. (1) A subset C of R" is a linear cyclic code of length
n, if and only if P(C) is an ideal of R[x]/(x" —1).
(2) A subset C of R" is a linear A -cyclic code of length n, if and only if
P(C) is an ideal of R[x]/(x" —2).

The following proposition is analogy of Proposition 2.3 [7], the proof is

also similar, so we omit it here.
Proposition 2.4. Let u be the map of R[x]/(x" -1) into

R[x]/ (x™ - (1 + u?)) defined by

ua(x)) = a((1 +u®)x).
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If n is odd, then p is a ring isomorphism. Hence, A subset I of
R[x]/(x™ —1) is an ideal, if and only if u(I) is an ideal of R[x]/(x" -
(1+u?)).
Let [ be the map:
n:R" > R",
(79, 11 =5 Tyy ) = (19, (1 + uz)rl, (1+u? )2r2, o, (T4 u? )iri, e (1 + uz)n_lrn_l).

The following corollary is now an immediate consequence of
Propositions 2.3 and 2.4.

Corollary 2.5. Let n be odd, then C — R" is a linear cyclic code, if
and only if Ti(C) is a linear (1 + u?)-cyclic code.

3. Gray Map

Every element ¢ € R" can be expressed uniquely as ¢ = x + uy +

u?z, where x, y, and z are in Fy.

Definition 3.1. The Gray map ® from R to ]Fé1 is given by
@(r) = (a3, ag +ay, ag +ag, ag +ag +ay),
where r = a1 + uaqg + u2a3 isin R, and aq, a9, ag arein Fy.

The Gray map can be extended to R" in a natural way, for ¢ = x +

uy + u’z € R", let
O)=(z,z+x,2+y,2+y+x),

where x = (x0, X1, =, X,-1), ¥ = (¥0> Y15 > Yn-1)> 2 = (20, 21, -+,

Zn-1 ) € IE‘I2n .
It is easy to see that @ is injective and linear.

Proposition 3.2. Let A = 1+ u?. Then Dy, = ®20.
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Proof. Let r = (ry, r, -, my_1)=x+uy+u’z be in R", where

x = (%0, %1, > X1 )y ¥ = (Y0, Y15 5 Yna1 ) 2 = (20, 215 5 251 ) € Fy.

From definitions, we obtain
Or)=(z,z+x,2+y, z+y+x)
= (20, "5 Zn-15 20 T X0, > Zno1 + 15 20 T Vos s

Zp1 + Yno1s 20 + Y0 + %05 s Zpo1 + Yo+ Xp1)s

and

®2
(D)) = (2421 + Xp_1s 20, 5 Zn—1» 20 + X0» 7 »
Zpn-2 T Xp-2,2p-1 +* Yn-1 T ¥p-1,20 + Yo, "**» Bp-1 + Yn-1»

20+ Y0 + X0, Zpg + Yng + Xp_g)

Let & =1+ u2. Then
2
v (r) = (1 + w” )ryq, 105 7y o5 Tg)

2 2
= (Xp_1 +uyp_g +u”(2,1 +%,1), Xo + uyy + u"zg, -,

2
Xp-9 T UYp_9 + U Zy 9 )

From Definition 3.1, we have

q)(uk(r)) = (Zn—l +Xp-15 205 "5 -2, @n-1> 20 T X0, 7 Bp-2 + Xp_2,

Zp-1 *Yn-1 T %p-1> 20 + Y0, "5 Zp-2 t Yn-2> Zp-1 t Yn-1»

20 + Yo + X0, s Zpog + Ypog + Xp ).
So, ®(vy,(r)) = c®(@(r)).
4. Binary Images of (1 + u?)- Cyclic and Cyclic Codes Over R
Theorem 4.1. A code C of length n over Ris a (1 + u? )-cyclic code, if
and only if ®(C) is a quasi-cyclic code over Fy of index 2 and of length

4n.
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Proof. Let & =1+ u? If Cis a (1+u?)-cyclic code of length n over

R, then v, (C) = C. It follows from Proposition 3.2 that ¢®?(®(C)) = @
(v2.(C)) = ®(C), so ®(C) is a quasi-cyclic code over Fy of index 2 and of
length 4n . Conversely, if ®(C) is a quasi-cyclic code over Fy of index 2
and of length 4n, then it follows from Proposition 3.2 that ®(v;(C)) =

s®2(®(C)) = d(C), so v4(C) = C, since ® is injective. O
Using Corollary 2.5 and Theorem 4.1, we obtain the following result.

Corollary 4.2. Let n be odd. If C — R" is a linear cyclic code, then
®(p(C)) is a linear quasi-cyclic code over Fy of index 2 and of length 4n.

Definition 4.3. Let T be the following permutation of
{0,1, -+, 4n — 1} with n odd:

T=0Ln+1)B, n+3)-2i+1,n+2+1)-(n-2 2n-2)(2n+1, 3n +1)
2n+3,3n+3)-(2n+2+1,3n+2+1)--(8n — 2, 4n - 2).
Let © be the permutations on ]Fém, given by
n(ag, ai, -+, Qgpy) = (ar(o), ar() > a’T(4n—1))'

Proposition 4.4. Assume n is odd. Then ®f = n®.

Proof. Let r = (ry, 1y, -, ry_1) = x +uy +u’z be in R", where
X = (x07 X157 xn—1)7 y = (_’)’0, Y15 s yn—1)7 = (ZO’ 215 " Zn—l) € an
Then, n(®(r)) = n(2g, s Zp_1s 20 + %05 "5 Zp_1 + Xp_1> 20 + Y0» -+
Zp-1 tYn-1>20 t Yo t X0, "> Zp-1 * Yp-1 t+ xn—l)
= (29, 21 + X1, 29, 23 + X3, 24, ", Zp_9 + Xn_9, Zn_1» 20 + X0, 21, 29 + X9,
23, 24 T X455 B2, Zp-1 T Xp-1, 20 T Yo, 21 T V1 T X1, 29 + Yo, 23 ¥ Y3 +
X35y Bp—2 T Yn-2 + Xp_2, Zp_1 T Yn-1, 20 T Yo t X0, 21 T V1,22 + Yo +

X9, 23 + Y3, "5 Zp—2 t Yn-2,2p-1 +Yp-1 + xn—l)‘
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From
) = (g, T+ u? )y, U+ Py, o, @+, e, (L4 2) )
= (ro, (L4 6P, 1, (LI, o, (14 62 yig, 1g)
= (xo + wyp + uzq, x1 +uy; + (21 + x1), X + uys + u’zy,
X3 +uys + (25 +X3), -+, Xpyg + U9 + U(2y_9 + Xp_9),

Xp-1 T UVn1 +u22n—1)-
It follows that, if ®(f(r)) = (99, ¢1, ***» Q4p—1), thenfor 0 < j < n - 1:
ifjeven: qj = 2j, qpij = 2j +Xj, Qonsj = Zj T Vj> Q3n+j = Zj TV} + X},
if j odd: q; =2 +Xj,qnsj =Zj,Qon+j =2 T Vj + X, Qansj = Zj + ;-
We see that ®(1i(r)) = n (®(r)) and, therefore, ®l = 7 ®. O

Corollary 4.5. If n is odd and, if T is the Gray image of a linear

cyclic code over R of length n, then n(T') is a linear cyclic code over Fy of

index 2 and length 4,,.

Proof. Let ' be such that T' = ®(C), where C is a linear cyclic code
over R. From Proposition 4.4, (®f1)(C) = (n®)(C) = = (). It follows from
Corollary 4.2, that = (') is a linear quasi-cyclic code over Fy of index 2

and length 4n. O

Recall that two codes I' and A of length m over Fy are said to be

equivalent, if there exists a permutation o of {0, 1, 2, ---, m —1} such

that A = o(I'), where o is the permutation of F5", such that
w(aoa a, s am—l) = (am(O)’ Qu(1) > aw(m—l))'

Obviously, a consequence of the previous result now is
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Theorem 4.6. If n is odd, then the Gray image of a linear cyclic code

over R of length n is equivalent to a linear cyclic code over Fy of index 2

and length 4,

5. Conclusion

In this paper, we studied (1+u2 )-cyclic and cyclic codes over

Fy + ulFy + u2F2 and characterized codes over Fy, which are the Gray

images of (1+u?)-cyclic and cyclic codes over Fy + uFy + u’Fy. An

interesting question is to study constacyclic and cyclic codes over

Fp +ulF, +- + ukIE‘p, where k is a position integer and p is a prime

number.
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