$(1 + u^2)$ - CYCLIC AND CYCLIC CODES OVER

 $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$

HUA LIANG and YUAN-SHENG TANG

Department of Mathematics Huaiyin Teachers College Huaian 223300, Jiangsu P. R. China e-mail: lianghuawq@163.com

School of Mathematical Science Yangzhou University Yangzhou 225002, Jiangsu P. R. China

Abstract

By constructing a Gray map Φ , $(1 + u^2)$ -cyclic and cyclic codes over the ring $R = \mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ are studied. We prove that C is a $(1 + u^2)$ -cyclic code of length n over R, if and only if $\Phi(C)$ is a quasi-cyclic code over \mathbb{F}_2 of index 2 and of length 4n. We also prove that, if n is odd, then every binary code which is the Gray image of a linear cyclic code of length n over R is equivalent to a linear quasi-cyclic code over \mathbb{F}_2 of index 2 and length 4n.

1. Introduction

There has been tremendous interest and research in codes over finite rings, especially the ring \mathbb{Z}_4 , in recent years. Codes over \mathbb{Z}_4 are linked

Received August 9, 2009

© 2010 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 94B05, 94B15.

Keywords and phrases: cyclic code, constacyclic code, quasi-cyclic codes, Gray map, permutation.

154 HUA LIANG and YUAN-SHENG TANG

to binary code via the Gray map. In [7], Wolfmann showed that the Gray image of a linear negacyclic code over \mathbb{Z}_4 of length n is a distanceinvariant (not necessary linear) cyclic code. He also showed that, for odd n, the Gray image of a linear cyclic code over \mathbb{Z}_4 of length n is equivalent to a binary cyclic code. Codes over $\mathbb{F}_2 + u\mathbb{F}_2$ also have been discussed by a number of authors. In [3], Bonnecaze and Udaya studied cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$. Qian and et al. [5] have studied cyclic code of odd length over $\mathbb{F}_2 + u\mathbb{F}_2$. Recently, Abualrub and Siap [1] studied (1 + u)-cyclic code of arbitrary length over $\mathbb{F}_2 + u\mathbb{F}_2$.

In this paper, by constructing a Gray map Φ , we prove that, if *n* is odd, the Gray image of a linear cyclic code of length *n* over $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ is equivalent to a cyclic code of length 4n over \mathbb{F}_2 .

2. Preliminaries

Let *R* be the commutative ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 := \mathbb{F}_2[u]/(u^3)$, where $u^3 = 0$. The binary field \mathbb{F}_2 is a subring of *R*. The element of *R* may be written as 0, 1, *u*, 1 + *u*, u^2 , 1 + u^2 , $u + u^2$, and 1 + $u + u^2$.

We emphasize that, throughout this paper, R denotes the commutative ring $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$.

Definition 2.1. For any $\lambda \in R \setminus \{0\}$, let ν_{λ} be the map from \mathbb{R}^n to \mathbb{R}^n , given by

$$\nu_{\lambda}(r_0, r_1, \cdots, r_{n-1}) = (\lambda r_{n-1}, r_0, r_1, \cdots, r_{n-2}).$$

Definition 2.2. Let \overline{R} be a commutative ring, and m be a positive integer. Then the shift σ of \overline{R}^m is the permutation defined by

 $\sigma(q_0, q_1, \cdots, q_{m-1}) = (q_{m-1}, q_0, q_1, \cdots, q_{m-2}),$

and for any positive integer s, let

$$\sigma^{\otimes s}: \overline{R}^{ms} \to \overline{R}^{ms},$$

$$(1+u^2) \text{-CYCLIC AND CYCLIC CODES OVER } \mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2 \quad 155$$
$$(a^{(1)}|a^{(2)}|\cdots|a^{(s)}) \to (\sigma(a^{(1)})|\sigma(a^{(2)})|\cdots|\sigma(a^{(s)})),$$

where $a^{(1)}, a^{(2)}, \dots, a^{(s)} \in \overline{R}^m$. In particular, $\sigma^{\otimes 1} = \sigma$.

A linear code of length *n* over *R* is a *R*-submodule of R^n . A cyclic code of length *n* over *R* is a subset *C* of R^n such that $\sigma(C) = C$. A code *C* over *R* satisfying $\nu_{\lambda}(C) = C$ is called a constacyclic code, or a λ -cyclic code, while a code *C'* over \overline{R} satisfying $\sigma^{\otimes s}(C') = C'$ is called a quasi-cyclic code of index *s* and of length *ms*. A 1-cyclic code is a cyclic code. A quasicyclic code of index 1 is a cyclic code.

In this paper, a cyclic, constacyclic, quasi-cyclic code need not be linear.

Let C be a code of length n over R, and P(C) be its polynomial representation, i.e.,

$$P(C) = \left\{ \sum_{i=0}^{n-1} r_i x^i | (r_0, r_1, \cdots, r_{n-1}) \in C \right\}.$$

It is easy to prove that:

Proposition 2.3. (1) A subset C of \mathbb{R}^n is a linear cyclic code of length n, if and only if P(C) is an ideal of $\mathbb{R}[x]/(x^n - 1)$.

(2) A subset C of \mathbb{R}^n is a linear λ -cyclic code of length n, if and only if P(C) is an ideal of $\mathbb{R}[x]/(x^n - \lambda)$.

The following proposition is analogy of Proposition 2.3 [7], the proof is also similar, so we omit it here.

Proposition 2.4. Let μ be the map of $R[x]/(x^n - 1)$ into $R[x]/(x^n - (1 + u^2))$ defined by

$$\mu(a(x)) = a((1+u^2)x).$$

If *n* is odd, then μ is a ring isomorphism. Hence, A subset *I* of $R[x]/(x^n - 1)$ is an ideal, if and only if $\mu(I)$ is an ideal of $R[x]/(x^n - (1 + u^2))$.

Let $\widetilde{\mu}$ be the map:

$$\widetilde{\mu}: \mathbb{R}^n \to \mathbb{R}^n,$$

 $(r_0, r_1, \cdots, r_{n-1}) \rightarrow (r_0, (1+u^2)r_1, (1+u^2)^2r_2, \cdots, (1+u^2)^i r_i, \cdots, (1+u^2)^{n-1}r_{n-1}).$

The following corollary is now an immediate consequence of Propositions 2.3 and 2.4.

Corollary 2.5. Let n be odd, then $C \subseteq \mathbb{R}^n$ is a linear cyclic code, if and only if $\tilde{\mu}(C)$ is a linear $(1 + u^2)$ -cyclic code.

3. Gray Map

Every element $c \in \mathbb{R}^n$ can be expressed uniquely as $c = x + uy + u^2 z$, where x, y, and z are in \mathbb{F}_2^n .

Definition 3.1. The Gray map Φ from R to \mathbb{F}_2^4 is given by

$$\Phi(r) = (a_3, a_3 + a_1, a_3 + a_2, a_3 + a_2 + a_1),$$

where $r = a_1 + ua_2 + u^2a_3$ is in *R*, and a_1 , a_2 , a_3 are in \mathbb{F}_2 .

The Gray map can be extended to R^n in a natural way, for $c = x + uy + u^2 z \in R^n$, let

$$\Phi(c) = (z, z + x, z + y, z + y + x),$$

where $x = (x_0, x_1, \dots, x_{n-1}), y = (y_0, y_1, \dots, y_{n-1}), z = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{F}_2^n$.

It is easy to see that Φ is injective and linear.

Proposition 3.2. Let $\lambda = 1 + u^2$. Then $\Phi \nu_{\lambda} = \sigma^{\otimes 2} \Phi$.

 $(1+u^2)$ -CYCLIC AND CYCLIC CODES OVER $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ 157 **Proof.** Let $r = (r_0, r_1, \dots, r_{n-1}) = x + uy + u^2z$ be in \mathbb{R}^n , where $x = (x_0, x_1, \dots, x_{n-1}), y = (y_0, y_1, \dots, y_{n-1}), z = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{F}_2^n$. From definitions, we obtain

$$\Phi(r) = (z, z + x, z + y, z + y + x)$$

= $(z_0, \dots, z_{n-1}, z_0 + x_0, \dots, z_{n-1} + x_{n-1}, z_0 + y_0, \dots, z_{n-1} + y_{n-1}, z_0 + y_0 + x_0, \dots, z_{n-1} + y_{n-1} + x_{n-1}),$

and

$$\begin{split} \sigma^{\otimes 2}(\Phi(r)) &= (z_{n-1} + x_{n-1}, \, z_0, \, \cdots, \, z_{n-1}, \, z_0 + x_0, \, \cdots, \\ &z_{n-2} + x_{n-2}, \, z_{n-1} + y_{n-1} + x_{n-1}, \, z_0 + y_0, \, \cdots, \, z_{n-1} + y_{n-1}, \\ &z_0 + y_0 + x_0, \, \cdots, \, z_{n-2} + y_{n-2} + x_{n-2} \, \big). \end{split}$$

Let $\lambda = 1 + u^2$. Then

From Definition 3.1, we have

$$\begin{split} \Phi(\nu_{\lambda}(r)) &= (z_{n-1} + x_{n-1}, \, z_0, \, \cdots, \, z_{n-2}, \, z_{n-1}, \, z_0 + x_0, \, \cdots, \, z_{n-2} + x_{n-2}, \\ &z_{n-1} + y_{n-1} + x_{n-1}, \, z_0 + y_0, \, \cdots, \, z_{n-2} + y_{n-2}, \, z_{n-1} + y_{n-1}, \\ &z_0 + y_0 + x_0, \, \cdots, \, z_{n-2} + y_{n-2} + x_{n-2} \, \bigr). \end{split}$$

So, $\Phi(\nu_{\lambda}(r)) = \sigma^{\otimes 2}(\Phi(r))$.

4. Binary Images of $(1 + u^2)$ -Cyclic and Cyclic Codes Over R

Theorem 4.1. A code C of length n over R is a $(1 + u^2)$ -cyclic code, if and only if $\Phi(C)$ is a quasi-cyclic code over \mathbb{F}_2 of index 2 and of length 4n. **Proof.** Let $\lambda = 1 + u^2$. If *C* is a $(1 + u^2)$ -cyclic code of length *n* over *R*, then $\nu_{\lambda}(C) = C$. It follows from Proposition 3.2 that $\sigma^{\otimes 2}(\Phi(C)) = \Phi(\nu_{\lambda}(C)) = \Phi(C)$, so $\Phi(C)$ is a quasi-cyclic code over \mathbb{F}_2 of index 2 and of length 4n. Conversely, if $\Phi(C)$ is a quasi-cyclic code over \mathbb{F}_2 of index 2 and of length 4n, then it follows from Proposition 3.2 that $\Phi(\nu_{\lambda}(C)) = \sigma^{\otimes 2}(\Phi(C)) = \Phi(C)$, so $\nu_{\lambda}(C) = C$, since Φ is injective.

Using Corollary 2.5 and Theorem 4.1, we obtain the following result.

Corollary 4.2. Let n be odd. If $C \subseteq \mathbb{R}^n$ is a linear cyclic code, then $\Phi(\widetilde{\mu}(C))$ is a linear quasi-cyclic code over \mathbb{F}_2 of index 2 and of length 4n.

Definition 4.3. Let τ be the following permutation of $\{0, 1, \dots, 4n - 1\}$ with *n* odd:

$$\tau = (1, n+1)(3, n+3)\cdots(2i+1, n+2i+1)\cdots(n-2, 2n-2)(2n+1, 3n+1)$$
$$(2n+3, 3n+3)\cdots(2n+2i+1, 3n+2i+1)\cdots(3n-2, 4n-2).$$

Let π be the permutations on \mathbb{F}_2^{4n} , given by

$$\pi(a_0, a_1, \cdots, a_{4n-1}) = (a_{\tau(0)}, a_{\tau(1)}, \cdots, a_{\tau(4n-1)}).$$

Proposition 4.4. Assume *n* is odd. Then $\Phi \tilde{\mu} = \pi \Phi$.

Proof. Let $r = (r_0, r_1, \dots, r_{n-1}) = x + uy + u^2 z$ be in \mathbb{R}^n , where $x = (x_0, x_1, \dots, x_{n-1}), y = (y_0, y_1, \dots, y_{n-1}), z = (z_0, z_1, \dots, z_{n-1}) \in \mathbb{F}_2^n$. Then, $\pi(\Phi(r)) = \pi(z_0, \dots, z_{n-1}, z_0 + x_0, \dots, z_{n-1} + x_{n-1}, z_0 + y_0, \dots, z_{n-1} + y_{n-1}, z_0 + y_0 + x_0, \dots, z_{n-1} + y_{n-1} + x_{n-1})$ $= (z_0, z_1 + x_1, z_2, z_3 + x_3, z_4, \dots, z_{n-2} + x_{n-2}, z_{n-1}, z_0 + x_0, z_1, z_2 + x_2, z_3, z_4 + x_4, \dots, z_{n-2}, z_{n-1} + x_{n-1}, z_0 + y_0, z_1 + y_1 + x_1, z_2 + y_2, z_3 + y_3 + x_3, \dots, z_{n-2} + y_{n-2} + x_{n-2}, z_{n-1} + y_{n-1} + x_{n-1}).$ $(1 + u^2)$ - CYCLIC AND CYCLIC CODES OVER $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ 159

From

$$\begin{split} \widetilde{\mu}(r) &= (r_0, (1+u^2)r_1, (1+u^2)^2 r_2, \cdots, (1+u^2)^i r_i, \cdots, (1+u^2)^{n-1} r_{n-1}) \\ &= (r_0, (1+u^2)r_1, r_2, (1+u^2)r_3, \cdots, (1+u^2)r_{n-2}, r_{n-1}) \\ &= (x_0 + uy_0 + u^2 z_0, x_1 + uy_1 + u^2 (z_1 + x_1), x_2 + uy_2 + u^2 z_2, \\ &\quad x_3 + uy_3 + u^2 (z_3 + x_3), \cdots, x_{n-2} + uy_{n-2} + u^2 (z_{n-2} + x_{n-2}), \\ &\quad x_{n-1} + uy_{n-1} + u^2 z_{n-1}). \end{split}$$

It follows that, if $\Phi(\tilde{\mu}(r)) = (q_0, q_1, \dots, q_{4n-1})$, then for $0 \le j \le n - 1$: if *j* even: $q_j = z_j, q_{n+j} = z_j + x_j, q_{2n+j} = z_j + y_j, q_{3n+j} = z_j + y_j + x_j$, if *j* odd: $q_j = z_j + x_j, q_{n+j} = z_j, q_{2n+j} = z_j + y_j + x_j, q_{3n+j} = z_j + y_j$. We see that $\Phi(\tilde{\mu}(r)) = \pi(\Phi(r))$ and, therefore, $\Phi\tilde{\mu} = \pi \Phi$.

Corollary 4.5. If n is odd and, if Γ is the Gray image of a linear cyclic code over R of length n, then $\pi(\Gamma)$ is a linear cyclic code over \mathbb{F}_2 of index 2 and length 4_n .

Proof. Let Γ be such that $\Gamma = \Phi(C)$, where *C* is a linear cyclic code over *R*. From Proposition 4.4, $(\Phi \tilde{\mu})(C) = (\pi \Phi)(C) = \pi(\Gamma)$. It follows from Corollary 4.2, that $\pi(\Gamma)$ is a linear quasi-cyclic code over \mathbb{F}_2 of index 2 and length 4n.

Recall that two codes Γ and Δ of length m over \mathbb{F}_2 are said to be equivalent, if there exists a permutation ω of $\{0, 1, 2, \dots, m-1\}$ such that $\Delta = \omega(\Gamma)$, where ω is the permutation of \mathbb{F}_2^m , such that

$$\omega(a_0, a_1, \dots, a_{m-1}) = (a_{\omega(0)}, a_{\omega(1)}, \dots, a_{\omega(m-1)}).$$

Obviously, a consequence of the previous result now is

Theorem 4.6. If n is odd, then the Gray image of a linear cyclic code over R of length n is equivalent to a linear cyclic code over \mathbb{F}_2 of index 2 and length 4_n .

5. Conclusion

In this paper, we studied $(1 + u^2)$ -cyclic and cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$ and characterized codes over \mathbb{F}_2 , which are the Gray images of $(1 + u^2)$ -cyclic and cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2 + u^2\mathbb{F}_2$. An interesting question is to study constacyclic and cyclic codes over $\mathbb{F}_p + u\mathbb{F}_p + \cdots + u^k\mathbb{F}_p$, where k is a position integer and p is a prime number.

References

- [1] T. Abualrub and I. Siap, Constacyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2$, J. Franklin. Inst. 346(5) (2009), 520-529.
- [2] M. C. V. Amarra and F. R. Nemenzo, On (1-u)-cyclic codes over $\mathbb{F}_{p^k} + u\mathbb{F}_{p^k}$, Appl. Math. Lett. 21 (2008), 1129-1133.
- [3] A. Bonnecaze and P. Udaya, Cyclic codes and self-dual codes over $\mathbb{F}_2 + u\mathbb{F}_2$, IEEE Trans. Inform. Theory 45 (1999), 1250-1255.
- [4] S. Ling and J. Blackford, $\mathbb{Z}_{p^{k+1}}$ -linear codes, IEEE Trans. Inform. Theory 45 (2002), 2592-2605.
- [5] J. F. Qian, L. N. Zhang and S. X. Zhu, (1 + u) constacyclic and cyclic codes over $\mathbb{F}_2 + u\mathbb{F}_2$, Appl. Math. Lett. 19 (2006), 820-823.
- [6] J. Wolfmann, Binary images of cyclic codes over Z₄, IEEE Trans. Inform. Theory 47 (1996), 1773-1779.
- J. Wolfmann, Negacyclic and cyclic codes over Z₄, IEEE Trans. Inform. Theory 45 (1999), 2527-2532.