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Abstract 

By constructing a Gray map ( )-1, 2u+Φ cyclic and cyclic codes over the ring 

2
2

22 FFF uuR ++=  are studied. We prove that C is a ( )-1 2u+ cyclic code of 

length n over R, if and only if ( )CΦ  is a quasi-cyclic code over 2F  of index 2 and of 
length 4n. We also prove that, if n is odd, then every binary code which is the  
Gray image of a linear cyclic code of length n over R is equivalent to a linear  
quasi-cyclic code over 2F  of index 2 and length .4n  

1. Introduction 

There has been tremendous interest and research in codes over finite 
rings, especially the ring ,4Z  in recent years. Codes over 4Z  are linked 
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to binary code via the Gray map. In [7], Wolfmann showed that the Gray 
image of a linear negacyclic code over 4Z  of length n is a distance-
invariant (not necessary linear) cyclic code. He also showed that, for odd 
n, the Gray image of a linear cyclic code over 4Z  of length n is equivalent 

to a binary cyclic code. Codes over 22 FF u+  also have been discussed by a 
number of authors. In [3], Bonnecaze and Udaya studied cyclic codes and 
self-dual codes over .22 FF u+  Qian and et al. [5] have studied cyclic code 

of odd length over .22 FF u+  Recently, Abualrub and Siap [1] studied 
( )-1 u+ cyclic code of arbitrary length over .22 FF u+  

In this paper, by constructing a Gray map ,Φ  we prove that, if n is 
odd, the Gray image of a linear cyclic code of length n over 

2
2

22 FFF uu ++  is equivalent to a cyclic code of length 4n over .2F  

2. Preliminaries 

Let R be the commutative ring [ ] ( ),: 3
22

2
22 uuuu FFFF =++  

where .03 =u  The binary field 2F  is a subring of R. The element of R 

may be written as ,,1,,1,,1,0 222 uuuuuu +++  and .1 2uu ++  

We emphasize that, throughout this paper, R denotes the 

commutative ring .2
2

22 FFF uu ++  

Definition 2.1. For any { },0\R∈λ  let λν  be the map from nR  to 

,nR  given by 

( ) ( ).,,,,,,, 2101110 −−−λ λ= nnn rrrrrrr LLν  

Definition 2.2. Let R  be a commutative ring, and m be a positive 

integer. Then the shift σ  of mR  is the permutation defined by 

( ) ( ),,,,,,,, 2101110 −−− =σ mmm qqqqqqq LL  

and for any positive integer s, let 

,: msmss RR →σ⊗  
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( ( ) ( ) ( ) ) ( ( ( ) ) ( ( ) ) ( ( ) )),2121 ss aaaaaa σσσ→ LL  

where ( ) ( ) ( ) .,,, 21 ms Raaa ∈L  In particular, .1 σ=σ⊗  

A linear code of length n over R is a R-submodule of .nR  A cyclic code 

of length n over R is a subset C of nR  such that ( ) .CC =σ  A code C over 

R satisfying ( ) CC =λν  is called a constacyclic code, or a λ -cyclic code, 

while a code C′  over R  satisfying ( ) CCs ′=′σ⊗  is called a quasi-cyclic 

code of index s and of length ms . A 1-cyclic code is a cyclic code. A quasi-
cyclic code of index 1 is a cyclic code. 

In this paper, a cyclic, constacyclic, quasi-cyclic code need not be 
linear. 

Let C be a code of length n over R, and ( )CP  be its polynomial 

representation, i.e., 

( ) ( ) .,,, 110

1

0 











∈= −

−

=
∑ CrrrxrCP n

i
i

n

i
L  

It is easy to prove that: 

Proposition 2.3. (1) A subset C of nR  is a linear cyclic code of length 

n, if and only if ( )CP  is an ideal of [ ] ( ).1−nxxR  

(2) A subset C of nR  is a linear λ -cyclic code of length n, if and only if 

( )CP  is an ideal of [ ] ( ).λ−nxxR  

The following proposition is analogy of Proposition 2.3 [7], the proof is 
also similar, so we omit it here. 

Proposition 2.4. Let µ  be the map of [ ] ( )1−nxxR  into 

[ ] ( ( ))21 uxxR n +−  defined by 

( )( ) (( ) ).1 2 xuaxa +=µ  
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If n is odd, then µ  is a ring isomorphism. Hence, A subset I of 

[ ] ( )1−nxxR  is an ideal, if and only if ( )Iµ  is an ideal of [ ] ( −nxxR  

( )).1 2u+  

Let µ~  be the map: 

,:~ nn RR →µ  

( ) ( ( ) ( ) ( ) ( ) ).1,,1,,1,1,,,, 1
122

2
22

1
2

0110 −
−

− ++++→ n
n

i
i

n rururururrrr LLL  

The following corollary is now an immediate consequence of 
Propositions 2.3 and 2.4. 

Corollary 2.5. Let n be odd, then nRC ⊆  is a linear cyclic code, if 

and only if ( )Cµ~  is a linear ( )-1 2u+ cyclic code. 

3. Gray Map 

Every element nRc ∈  can be expressed uniquely as ++= uyxc  

,2zu  where ,, yx  and z are in .2
nF  

Definition 3.1. The Gray map Φ  from R to 4
2F  is given by 

( ) ( ),,,, 12323133 aaaaaaaar ++++=Φ  

where 3
2

21 auuaar ++=  is in R, and 321 ,, aaa  are in .2F  

The Gray map can be extended to nR  in a natural way, for += xc  

,2 nRzuuy ∈+  let 

 ( ) ( ),,,, xyzyzxzzc ++++=Φ  

where ( ) ( ) ( ,,,,,,,,,,, 10110110 LLL zzzyyyyxxxx nn === −−  

) .21
n

nz F∈−   

It is easy to see that Φ  is injective and linear. 

Proposition 3.2. Let .1 2u+=λ  Then .2Φσ=Φ ⊗
λν  
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Proof. Let ( ) zuuyxrrrr n
2

110 ,,, ++== −L  be in ,nR  where  

( ) ( ) ( ) .,,,,,,,,,,, 2110110110
n

nnn zzzzyyyyxxxx F∈=== −−− LLL

 From definitions, we obtain 

  ( ) ( )xyzyzxzzr ++++=Φ ,,,  

  ( ,,,,,,,, 00110010 LLL yzxzxzzz nnn +++= −−−  

 ),,,, 11100011 −−−−− +++++ nnnnn xyzxyzyz L  

and 

 ( )( ) ( ,,,,,, 001011
2 LL xzzzxzr nnn ++=Φσ −−−

⊗  

,,,,, 110011122 −−−−−−− +++++ nnnnnnn yzyzxyzxz L  

).,, 222000 −−− ++++ nnn xyzxyz L  

Let .1 2u+=λ  Then 

( ) (( ) )2101
2 ,,,,1 −−λ += nn rrrrur Lν  

( ( ) ,,, 0
2

0011
2

11 Lzuuyxxzuuyx nnnn +++++= −−−−  

).2
2

22 −−− ++ nnn zuuyx  

From Definition 3.1, we have 

( ( )) ( ,,,,,,,, 220012011 −−−−−−λ +++=Φ nnnnnn xzxzzzzxzr LLν  

,,,,, 112200111 −−−−−−− +++++ nnnnnnn yzyzyzxyz L  

).,, 222000 −−− ++++ nnn xyzxyz L  

So, ( ( )) ( )( ).2 rr Φσ=Φ ⊗
λν      

4. Binary Images of ( )-1 2u+ Cyclic and Cyclic Codes Over R 

Theorem 4.1. A code C of length n over R is a ( )-1 2u+ cyclic code, if 

and only if ( )CΦ  is a quasi-cyclic code over 2F  of index 2 and of length 

4n. 
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Proof. Let .1 2u+=λ  If C is a ( )-1 2u+ cyclic code of length n over 

R, then ( ) .CC =λν  It follows from Proposition 3.2 that ( )( ) Φ=Φσ⊗ C2  
( ( )) ( ),CC Φ=λν  so ( )CΦ  is a quasi-cyclic code over 2F  of index 2 and of 
length 4n . Conversely, if ( )CΦ  is a quasi-cyclic code over 2F  of index 2 

and of length 4n, then it follows from Proposition 3.2 that ( ( )) =Φ λ Cν  

( )( ) ( ),2 CC Φ=Φσ⊗  so ( ) ,CC =λν  since Φ  is injective.    

Using Corollary 2.5 and Theorem 4.1, we obtain the following result. 

Corollary 4.2. Let n be odd. If nRC ⊆  is a linear cyclic code, then 
( ( ))CµΦ ~  is a linear quasi-cyclic code over 2F  of index 2 and of length 4n. 

Definition 4.3. Let τ  be the following permutation of 
{ }14,,1,0 −nL  with n odd:  

( ) ( ) ( ) ( ) ( )13,1222,212,123,31,1 ++−−+++++= nnnnininn LLτ  

( ) ( ) ( ).24,23123,12233,32 −−++++++ nnininnn LL  

Let π  be the permutations on ,4
2

nF  given by 

( ) ( ( ) ( ) ( ) ).,,,,,, 14101410 −− =π nn aaaaaa τττ LL  

Proposition 4.4. Assume n is odd. Then .~ Φπ=µΦ  

Proof. Let ( ) zuuyxrrrr n
2

110 ,,, ++== −L  be in ,nR  where  

( ) ( ) ( ) .,,,,,,,,,,, 2110110110
n

nnn zzzzyyyyxxxx F∈=== −−− LLL  

Then, ( )( ) ( ,,,,,,,, 00110010 KLL yzxzxzzzr nnn +++π=Φπ −−−  
)11100011 ,,, −−−−− +++++ nnnnn xyzxyzyz L  

( ,,,,,,,,,,, 221001224332110 xzzxzzxzzxzzxzz nnn +++++= −−−L  

++++++++ −−− 332211100112443 ,,,,,,,, yzyzxyzyzxzzxzz nnnL  

++++++++ −−−−− 2211000112223 ,,,,,, yzyzxyzyzxyzx nnnnnL  

).,,,, 11122332 −−−−− ++++ nnnnn xyzyzyzx L  
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From 

( ) ( ( ) ( ) ( ) ( ) )1
122

2
22

1
2

0 1,,1,,1,1,~
−

−++++=µ n
n

i
i rururururr LL  

 ( ( ) ( ) ( ) )12
2

3
2

21
2

0 ,1,,1,,1, −−+++= nn rrururrur L  

 ( ( ) ,,, 2
2

2211
2

110
2

00 zuuyxxzuuyxzuuyx +++++++=  

 ( ) ( ),,, 22
2

2233
2

33 −−−− ++++++ nnnn xzuuyxxzuuyx L  

 ).1
2

11 −−− ++ nnn zuuyx  

It follows that, if ( ( )) ( ),,,,~
1410 −=µΦ nqqqr L  then for :10 −≤≤ nj  

if j even: ,,,, 32 jjjjnjjjnjjjnjj xyzqyzqxzqzq ++=+=+== +++  

if j odd: .,,, 32 jjjnjjjjnjjnjjj yzqxyzqzqxzq +=++==+= +++  

We see that ( ( )) ( )( )rr Φπ=µΦ ~  and, therefore, .~ Φπ=µΦ   

Corollary 4.5. If n is odd and, if Γ  is the Gray image of a linear 
cyclic code over R of length n, then ( )Γπ  is a linear cyclic code over 2F  of 

index 2 and length .4n  

Proof. Let Γ  be such that ( ),CΦ=Γ  where C is a linear cyclic code 

over R. From Proposition 4.4, ( ) ( ) ( ) ( ) ( ).~ Γπ=Φπ=µΦ CC  It follows from 

Corollary 4.2, that ( )Γπ  is a linear quasi-cyclic code over 2F  of index 2 

and length 4n.    

Recall that two codes Γ  and ∆  of length m over 2F  are said to be 

equivalent, if there exists a permutation ω  of { }1,,2,1,0 −mL  such 

that ( ),Γω=∆  where ω  is the permutation of ,2
mF  such that 

( ) ( ( ) ( ) ( ) ).,,,,,, 110110 −ωωω− =ω mm aaaaaa LL  

Obviously, a consequence of the previous result now is 
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Theorem 4.6. If n is odd, then the Gray image of a linear cyclic code 
over R of length n is equivalent to a linear cyclic code over 2F  of index 2 

and length .4n  

5. Conclusion 

In this paper, we studied ( )-1 2u+ cyclic and cyclic codes over 

2
2

22 FFF uu ++  and characterized codes over ,2F  which are the Gray 

images of ( )-1 2u+ cyclic and cyclic codes over .2
2

22 FFF uu ++  An 
interesting question is to study constacyclic and cyclic codes over 

,p
k

pp uu FFF +++ L  where k is a position integer and p is a prime 

number. 
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